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Abstract

We study collective decision-making procedures involving the formation

of an agenda of issues and the subsequent vote on the position for each issue

on the agenda. Issues that are not on the agenda remain unsettled. We

use a protocol-free equilibrium concept introduced by Dutta et al. (2004)

and show that in equilibrium, and under general conditions, any subset

of issues may be excluded from the agenda in equilibrium whenever the

voting rule belongs to one of two prominent families. What is voted upon

and what is not depends on the voters preferences in a subtle manner,

suggesting a high degree of instability. We also discuss further conditions

under which this “anything goes” result may be qualified. In particular,

we study those cases where all issues will be put in the agenda.

1 Introduction

When preparing a constitution, legislators may decide to only contemplate a few

basic issues, or else seek to regulate many aspects of political life. When getting
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ready to elect new members of a learned society, the present ones may propose

many candidates to be in the ballot, or else refrain from doing so. These are

instances of decision-making situations where the same agents who will have to

vote on an agenda are given the chance to decide on what issues to concentrate.

In this paper we study how the number and nature of the issues contemplated

by a voting body depend on the voting rules to be used, and on the expectations

of voters regarding how others with whom they agree or do not agree will behave.

We consider a group of voters facing a set of potential issues. The alternatives

they face are vectors that describe, for each issue, one of three possible results

of their actions: either the issue is not put to vote, or it is, and in that case,

one of two positions is adopted. All voters prefer, ceteris paribus, to have a vote

on those issues where their preferred position will prevail, rather than leaving

it undefined. Similarly, they prefer to avoid a vote on those issues where their

worse position would be chosen. Our focus is placed on the process whereby some

issues enter the agenda and others do not.

Our analysis of agenda formation is based on a protocol-free notion of equi-

librium proposed by Dutta, Le Breton and Jackson (2004). Given a voting pro-

cedure, and a set of potential issues, we concentrate on the possible processes

whereby an agenda can result from the proposals of different voters. Agendas are

ordered sequences of issues. A full agenda is one that lists all possible issues. An

agenda a′ is a continuation agenda of agenda a if a is the list of first elements

of a′. Notice that any agenda is always a continuation agenda of itself. Also,

the only continuation of a full agenda is that same agenda. The primary ob-

jects on which we predicate our equilibrium notion are collections of continuation

agendas. A collection is an equilibrium if it excludes continuations that fail to

satisfy several mild conditions. An equilibrium collection thus consists of a set of

equilibrium continuation agendas for each agenda a. The first condition is that

any equilibrium continuation agenda at a is either a itself or is some equilibrium

continuation at an agenda a′ reached by adding one further issue to a. The re-

maining conditions depend on the voting procedure under consideration. The

second condition is that a is an equilibrium continuation at a if and only if the

vote on any agenda a′, which is an equilibrium continuation when one further

issue has been added to a, would result in a vector of positions on issues that is

2



worse for all voters than what they get if the vote is restricted to a. The third con-

dition is that essentially only rationalizable continuation agendas are equilibrium

continuations, where a continuation agenda a′ at a is defined to be rationalizable

if there exists some voter who prefers a′ over some other equilibrium continua-

tion a′′ at a. Equilibrium collections of sets of continuation agendas provide us

with a representation of consistent expectations regarding what outcomes agents

can expect from their own action and that of others, depending on the agendas

for which a vote is taken. These expectations are consistent with each agent’s

behavior, but allow for a variety of possible timings in the actions of each one of

them. In that sense, our equilibrium notion is not dependent of the specifics that

would be introduced if we were to impose any single protocol on the actions of

voters.

Although rather involved, an advantage of the proposed equilibrium notion is

that it poses no existence problems. Moreover, the characterization of families of

equilibrium continuation agendas closely follows the steps of a backward induction

argument that is quite analogous to the pruning procedure suggested by Arieli

and Aumann (2015) for the case of subgame perfect equilibria. Since any full

agenda is its own continuation, we can start by asking whether an agenda a that

contains all issues but one satisfies the equilibrium requirements. If it does, its

continuation full agenda will be pruned. If it does not, then the expectation

that a is its own equilibrium continuation is pruned. That leaves us with a

family of potential equilibria regarding agendas where at most all issues but one

are considered. Then we can continue a similar pruning process for agendas

containing all but two issues, and proceed in a similar manner until we reach

the case where the agenda is empty and no issue is put to vote. The family of

continuation agendas that survives the pruning process is an equilibrium.

We prove that in many relevant cases, the exact number of issues that will

be put to vote is highly dependent on the specification of the voting rule and

the preferences of voters. Specifically, given some natural assumptions regarding

preference domains we prove “anything goes” results of the following type: For a

given voting procedure, give us an agenda of (almost) any length, and we’ll show

you a preference profile within the domain that has this agenda as its unique equi-

librium. We prove such anything goes results for two prominent classes of voting
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procedures, the amendment procedures and voting by quota. We consider these

results to be relevant on several accounts. First of all, it is commonly observed

that bills on the same subject can be lengthy or short, depending on time and

country. Specifically, some constitutions only address a few aspects of principle,

while others are much more specific. One could attribute these differences to

exogenous factors: legislators may have deep beliefs regarding the correct level of

detail that a constitution must go into. Our results show that one need not appeal

to such exogenous and unexplained principles. Rather, the chances to prevail on

certain issues and not on others are shown to drive legislators to support more

or less detailed agendas. Also relevant is the remark that our “anything goes”

results are valid for two prominent classes of voting procedures, the amendment

procedure and voting by quota, and even under significant domain restrictions.

Different sized agendas can emerge under many circumstances. But it is also true

that the specific sizes of equilibrium agendas hinge on rather volatile features of

the voters’ preferences, and therefore reflect a high level of potential instability.

This remark fits well with the warnings of noted political scientists regarding the

ever-present potential for instability and change in political situations (Riker,

1982, 1993; Cox and Shepsle, 2007). Our analysis also points at an additional

form of manipulation that may be in the hands of a chair. It is the possibility

of changing the agent’s attitude on whether or not to discuss an issue by simply

altering the order on which issues on the agenda will be presented for a vote.

This type of manipulation could be an additional instrument in the hands of a

chairperson, even of one who cannot directly determine what issues should be

discussed.

In addition to the permissive results we have just emphasized, we also provide

several sufficient conditions under which the only equilibrium agendas would be

full, and all issues brought to the floor. This is important because previous work

by Dutta et al. (2004) showed that, in a different context, only full agendas would

result in equilibrium as long as the voting rule is efficient. By contrast, efficiency

alone is by no means sufficient to precipitate this same result in our case. This

is because our model distinguishes between two cases that are merged in their

formulation. We treat separately the possibility that a position is not adopted

on an issue because there is no vote, or because it was brought to the floor and

4



defeated there.

The literature on agenda formation is rich, and the following overview is

necessarily incomplete. Most previous work considers a specific protocol for the

agenda formation and the subsequent voting stage. Austen-Smith (1987), Banks

and Gasmi (1987), Baron and Ferejohn (1989), Miller, Grofman, and Feld (1990),

Duggan (2006) and Penn (2008) all assume that voting takes place only after

the agenda has been built. By contrast, Bernheim, Rangel, and Rayo (2006)

analyse the case of “real-time” agenda setting, where any proposal is put to an

immediate vote against the current default. In Eguia and Shepsle (2015) the

bargaining protocol is endogenized and chosen by the members of a legislative

assembly before the agenda is formed. While all these papers consider the case

of complete information like we do, Godefroy and Perez-Richet (2013) use an

incomplete information framework to study how the majority quota used to place

alternatives on the agenda affects agents’ behavior and hence the likelihood to

change the status quo. There are only few papers that do not rely on a specific

bargaining protocol. Among the notable exceptions is Dutta et al. (2004) who

study equilibrium agendas in a model with farsighted agents. Their main result

is that the set of equilibrium outcomes for Pareto efficient voting rules coincides

with the outcomes when all full agendas are considered. Unlike in their paper,

and as we shall discuss later, we show that in our model equilibrium agendas may

not contain all issues even if the voting rule is Pareto efficient. Vartiainen (2014)

also considers a protocol free agenda formation process, but this time, unlike in

Dutta et al. (2004), in a real-time agenda setting.

There is also a related literature that focusses on strategic candidacy (Os-

borne and Slivinsky, 1996; Besley and Coate, 1997; Dutta et al., 2001, 2002).

The main difference with models of agenda formation like ours is that in strate-

gic candidacy problems, the agents who take the agenda formation decision, by

choosing whether to run or not to, are different from those who will eventually

vote.

Our main departure from previous work comes from the distinction between

the issues that may be potentially discussed and the positions that society may

eventually adopt regarding these issues. An agenda, in our setting, is a (possibly

ordered) set of issues to be voted upon, and an alternative is a vector of positions
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on these issues. Previous models treat alternatives as the primitives of the prob-

lem, and then allow for agents to add an alternative to a previous agenda without

changing the nature of those that were already in. In our model, expanding the

agenda by including an additional issue completely changes the set of alternatives

faced by agents, since the size of the vector of issues to be voted on is increased.

That makes our formulation, and also our results, to be different than previous

ones in the literature. In particular, we find that the size of the agenda may vary,

and that it depends on characteristics of preferences that may be quite volatile.

Hence, although our analysis allows for a notion of equilibrium agendas, it also

indicates some of the reasons why societies may quickly abandon any equilibrium

in favor of new objects of debate and conflict.

The outline of the paper is the following. In Section 2 we introduce our

model and equilibrium concept. In Section 3 we present an example with a

Pareto efficient voting rule where equilibrium agendas can be of arbitrary length.

In Section 4 we study sufficient conditions for equilibrium agendas to be full

agendas. Section 5 proves an anything goes result for two prominent voting

procedures. Section 6 concludes. All proofs are in the appendix.

2 The Model

We consider a group of n ≥ 2 agents facing a given set of issues K = {1, . . . , K}
with K ≥ 2. The group may decide to keep silent on some issues, thus leaving its

position on it undefined, while being ready to take a vote on others, in which case

one of two positions will be voted upon and adopted for each one of those. We

denote by “−” the decision to leave an issue out of the voting floor, and by 0 and

1 the two possible positions on issues that are voted upon. Social alternatives

are then K-tuples indicating, for each issue, whether or not it was the object

of a vote, and, if so, which stand was adopted on it. Accordingly, the set of

alternatives then is given by X = {0, 1,−}K.

Our model applies in those cases where a voting body may bind itself to take

positions on certain issues, and not on others. For example, the writers of a

constitution may feel that they must take a stand regarding some fundamental

6



aspects of political life, but leave others to be defined by practice or by legislation

of a lower rank. Another example is the election of new members of a society,

where agents may prefer not to nominate a candidate they like if they expect her

to lose in the election.

Preferences

Every agent i has a strict preference ordering �i on X, which satisfies between-

ness:

Definition 2.1 A preference ordering � on X satisfies betweenness if for all

k ∈ K, and for all x ∈ X, either

(1, xK\{k}) � (−, xK\{k}) � (0, xK\{k})

or

(0, xK\{k}) � (−, xK\{k}) � (1, xK\{k}).
1

By P we denote the set of strict preference orderings that satisfy betweenness.

Under betweenness, other things being equal, an agent strictly prefers the alter-

native that takes his preferred position on some issue k over leaving the position

open, and he strictly prefers the latter to the alternative where the position is

his worse. Observe that this assumption is compatible with the interpretation

that agents perceive the resulting indeterminacy as creating a lottery between

the competing positions, to be resolved in the future. Then, observe that our

assumption will be satisfied whenever the agent’s preference ordering can be rep-

resented by an expected utility function such that the utility of (−, xK\{k}) is the

expected utility of a lottery over the set {(0, xK\{k}), (1, xK\{k})}, where the agent

assigns a positive probability to both outcomes, (0, xK\{k}) and (1, xK\{k}), that

is independent of the corresponding probabilities for other open positions, if any.

For later use we introduce two separability properties of preference orderings.

1For x ∈ {0, 1,−}K and M ⊂ K we denote by xM the projection of x onto {0, 1,−}M.

Moreover, for x, y ∈ {0, 1,−}K and M ⊂ K, (xM, yK\M) is the vector z ∈ {0, 1,−}K with

zk = xk for all k ∈M and zk = yk for all k ∈ K \M.
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Definition 2.2

(1) A preference ordering � on X = {0, 1,−}K is separable if for all k ∈ K,

(xk, x−k) � (yk, x−k) for some x−k ∈ {0, 1,−}K\{k} implies that (xk, x
′
−k) �

(yk, x
′
−k) for all x′−k ∈ {0, 1,−}K\{k}.

(2) A preference ordering � on X is additively separable on X if there exist

scalars uk(w) ∈ R for k ∈ K, and w ∈ {0, 1,−} such that for x, y ∈ X,

x � y ⇐⇒
K∑
k=1

uk(xk) >
K∑
k=1

uk(yk).

If � satisfies betweenness and additive separability, then for all issues k ∈ K,

max{uk(1), uk(0)} > uk(−) > min{uk(1), uk(0)}.

We consider a two-stage decision making process. In the first stage agents

decide which issues to bring to the floor, and in what order they will be considered.

The ordered list of these issues will be an agenda. After that, in the second stage,

they vote on what position to take on each of the issues of the agenda. Since

we allow for the case where the order in which issues are selected for vote plays

a role in the second stage, agendas will not only specify what issues are put to

vote, but also in what order, if that makes any difference. Notice that this order

need not be the same as the one we have used to give name to the issues in our

previous definition of the set K.

Agendas

Let m ∈ {1, . . . , K}. Then a = (a1, . . . , am) with al ∈ K for l = 1, . . . ,m, and

al 6= al′ for l 6= l′ is called an agenda of length m. The empty agenda ∅ where

no issue is put to vote is defined to have length 0. By Am we denote the set of

agendas of length m, where 0 ≤ m ≤ K, and by A =
⋃K

m=0 A
m we denote the set

of all agendas.

Let a ∈ A. If an issue k is not on the agenda a, i.e. k /∈ a, we call k a free

issue at a.2 For a ∈ Am, where 0 ≤ m ≤ K − 1, and k ∈ K, k /∈ a, (a, k) denotes

the agenda a′ ∈ Am+1 with a′l = al for l = 1, . . . ,m, and a′m+1 = k.

2Here and in what follows, for a given agenda a = (a1, . . . , am) ∈ A we write, for short,

k ∈ a (k /∈ a) whenever k = al for some l ∈ {1, . . . ,m} (k 6= al for all l = 1, . . . ,m).
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For a given agenda a ∈ A we denote by X(a) the set of available alternatives

at a, i.e.

X(a) = {x ∈ X | for all k ∈ K, xk ∈ {0, 1} if and only if k ∈ a}.

Observe that X(∅) = {(−, . . . ,−)}.

Voting

For the second stage we take as given a voting procedure that chooses a position

for each issue on the agenda and leaves open the position for any free issue.

Formally, a voting procedure on some domain of preference orderings D ⊂ P is

a mapping V : A × Dn → X with V (a, P ) ∈ X(a) for all a ∈ A and P ∈ Dn.

Notice that a voting procedure, in our definition, associates a single outcome to

each preference profile and each agenda a. Also, observe that the voting procedure

need not be sensitive to the ordering of issues in a, and may only depend on the

set of issues in the agenda.

One way to arrive at such voting procedures is to propose a game form,

coupled with a solution that has unique equilibrium outcomes at each associated

game. For example, we can select a sequential voting rule, defined by a binary

tree and by a given majority rule to be used at each node, and associate to each

profile of preferences the (unique) outcome under sophisticated voting induced by

that profile, i.e. the subgame perfect equilibrium outcome obtained by iterative

elimination of weakly dominated strategies. Alternatively, we could assume that

agents vote sincerely and obtain a different function for the same tree.3

Agenda Formation

In the first stage, starting from the empty agenda agents can unilaterally add

issues to the agenda. This process stops when either a full agenda a ∈ AK is

reached or no agent wants to add further issues. Instead of modeling the agenda

3Since it is well known that the same tree structure may lead to different outcomes depending

on the order of vote on alternatives (see Barberà and Gerber, 2017, and references therein),

this order must be determined when defining the voting rule. Notice that the order of vote on

these alternatives may not be related to the order of issues in the agenda. See Section 3 for

specific cases of application.
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formation as a noncooperative game, where equilibrium agendas could poten-

tially be very sensitive to the details of the game, we follow Dutta et al. (2004)

and consider an equilibrium collection of sets of continuation agendas defined as

follows.

For a ∈ Am, where m ∈ {0, 1, . . . , K}, let A(a) be the set of continuation

agendas, i.e.

A(a) = {a′ ∈ A | a′k = ak for all k = 1, . . . ,m}.4

For given P ∈ Dn, an equilibrium collection of sets of continuation agendas is

a collection (CE(a, P ))a∈A, where CE(a, P ) ⊂ A(a) for each a ∈ A, that satisfies

the following two conditions for all a ∈ A:

(E1) CE(a, P ) is a nonempty subset of
⋃

k/∈a CE((a, k), P ) ∪ {a}.
(E2) a ∈ CE(a, P ) if and only if V (a, P ) �i V (a′, P ) for all a′ ∈

⋃
k/∈a CE((a, k), P )

and for all i = 1, . . . , n.5

In what follows, for a given equilibrium collection of sets of continuation agendas

(CE(a, P ))a∈A, we will refer to the continuation agendas in CE(a, P ) for a ∈ A

as equilibrium continuations.

Equilibrium collections of sets of continuation agendas express expectations

about the agendas that will obtain starting from any given agenda a. Since

issues are assumed to be added one after the other, expectations at agenda a

have to be such that they either do not involve further additions of issues, or

else are equilibrium continuations if one further issue is added to a (see condition

(E1)). Moreover, no further additions of issues to an agenda a are expected if and

only if no agent would be interested in adding any additional issue after having

reached a, in view of what the expected continuations would be (see condition

(E2)). Observe that this is a rather weak stopping requirement because an agent

is assumed to stop adding issues to the agenda only if stopping is better than

all equilibrium continuations reached when one further issue is added to the

existing agenda. Nevertheless, as we will show, equilibrium continuations are not

4Observe that a ∈ A(a) for all a ∈ A, i.e. any agenda is a continuation agenda for itself.
5Notice that V (a′, P ) 6= V (a, P ) for all a′ ∈

⋃
k/∈a CE((a, k), P ) since any such agenda a′

contains at least one issue k /∈ a which implies that (V (a, P ))k = − 6= (V (a′, P ))k.
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necessarily full agendas, even for restricted domains of preferences and very well

behaved voting procedures.

In order to reduce the potential multiplicity of equilibrium collections of sets

of continuation agendas we impose a third condition, which we call consistency

(cf. Dutta et al., 2004). To this end, for a ∈ A we define an agenda a′ =

(a, k, . . .) ∈ A to be rationalizable (relative to a) if a′ ∈ CE((a, k), P ) and there

exists an agent i and a′′ ∈ CE(a, P ) with either a′′ = (a, l, . . .) with l 6= k

or a′′ = a such that V (a′, P ) �i V (a′′, P ). Hence, the continuation agenda

(a, k, . . .) is rationalizable relative to a if it is an equilibrium continuation at (a, k)

and if some agent can gain from reaching it rather than sticking to some other

equilibrium continuation at a. An equilibrium collection of sets of continuation

agendas then is defined to be consistent if it satisfies the following condition:

(E3) If a′ ∈
⋃

l /∈aCE((a, l), P ) is rationalizable, then a′ ∈ CE(a, P ). Conversely,

if a′ = (a, k, . . .) ∈ CE(a, P ) and either a ∈ CE(a, P ) or a′′ = (a, l, . . .) ∈
CE(a, P ) for some l 6= k, then a′ is rationalizable.

Thus, consistency requires that an equilibrium collection of sets of continuation

agendas contains all rationalizable continuation agendas. Moreover, it only con-

tains rationalizable continuation agendas subject to the following two exceptions:

The first is that the agenda a itself is an equilibrium continuation if all agents

prefer to stop at a (condition (E2)). The second exception is when there is a

unique equilibrium continuation a′ = (a, k, . . .) at a which is then not required

to be rationalizable. Observe, however, that the latter case only obtains if there

is an agent who prefers continuing over stopping at a and if agents unanimously

prefer a′ to adding an issue different from k to agenda a.

Since we are mainly interested in the agenda that obtains when all issues are

still free, it is convenient to introduce the following terminology:

Definition 2.3 Let a∗ ∈ A and P ∈ Pn. Then a∗ is a (consistent) equilib-

rium agenda at P if there exists a (consistent) equilibrium collection of sets of

continuation agendas (CE(a, P ))a∈A with a∗ ∈ CE(∅, P ).
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Before we consider an example with two issues we record the following result

which is a straightforward implication of condition (E1): If an agenda a∗ is an

equilibrium continuation at some agenda a, then it is an equilibrium continuation

at every agenda along the path from a to a∗.

Lemma 2.1 Let V : A × Dn → X be a voting procedure and let (CE(a, P ))a∈A

be an equilibrium collection of sets of continuation agendas for some P ∈ Dn. If

a = (a1, . . . , am) ∈ CE((a1, . . . , al), P ) for some l ≤ m ≤ K, then

a ∈ CE((a1, . . . , ak), P ) for all k = l, . . . ,m.

In particular,

a ∈ CE(a, P ).

3 An Example

We consider the election of new members to a society. There are two candidates,

1 and 2, i.e. the set of issues is K = {1, 2}. In this case “−” means that the corre-

sponding candidate is not nominated, “1” means that the candidate is nominated

and elected and “0” means that the candidate is nominated and not elected. The

set of alternatives then is

X = {(−,−), (0,−), (1,−), (−, 0), (−, 1), (0, 0), (0, 1), (1, 0), (1, 1)}.

Let there be three agents with preference orderings on the set of alternatives

given in Table 1, where the alternatives in the table are listed in the order of

decreasing preference. Note that all preference orderings are separable and satisfy

betweenness.

Suppose that for any agenda a voting follows the amendment procedure (Far-

quharson, 1969; Miller, 1977, 1980) for some exogenously given ordering of the

attainable alternatives in X(a). That is, if (x1, x2, . . . , xN) is the given ordering

of the alternatives in X(a), then the first vote is over x1 and x2, the second

vote is over the winner of the first vote and x3, and so on until all alternatives

in (x1, x2, . . . , xN) are exhausted. In every pairwise vote the winner is selected

12



�1 �2 �3

(0, 1) (1, 0) (1, 1)

(0,−) (−, 0) (−, 1)

(−, 1) (1,−) (0, 1)

(−,−) (−,−) (1,−)

(0, 0) (0, 0) (−,−)

(−, 0) (0,−) (0,−)

(1, 1) (1, 1) (1, 0)

(1,−) (−, 1) (−, 0)

(1, 0) (0, 1) (0, 0)

Table 1: Preference orderings K = {1, 2}.

according to simple majority voting. Notice that in our example the ordering of

the attainable alternatives is relevant only if both issues are on the agenda.6

Agents are assumed to be sophisticated (Farquharson, 1969) and thus the

voting outcome is given by Nash equilibrium in undominated strategies. It is well

known that the amendment procedure is efficient (Miller, 1977, 1980; Barberà and

Gerber, 2017).

In order to solve for the equilibrium agendas we first determine the voting

outcome for any agenda that contains at most one alternative. At the empty

agenda the outcome is the unique attainable alternative (−,−), i.e.

V (∅, P ) = (−,−).

At agenda a = (1) the outcome is

V ((1), P ) = (1,−),

because a majority of agents prefer (1,−) over (0,−), and at agenda a = (2) the

outcome is

V ((2), P ) = (−, 1),

6If there is only one issue on the agenda, e.g. issue 1, then there are only two attainable

alternatives, (1,−) and (0,−), and the voting outcome is independent of the ordering of these

alternatives.
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since a majority of agents prefer (−, 1) over (−, 0). Finally, we determine the

voting outcome at the full agendas, (1, 2) and (2, 1) with attainable sets

X(1, 2) = X(2, 1) = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Figure 1 shows the dominance relation on {(0, 0), (0, 1), (1, 0), (1, 1)} that results

from pairwise simple majority voting.

(1, 1)

Q
Q
Q
Q
QQs

�
�
�

�
��+

(0, 1)(1, 0) �

Q
Q
Q
Q
QQs

�
�

�
�
��+

(0, 0)

6

Figure 1: Dominance relation on {(0, 0), (0, 1), (1, 0), (1, 1)} under pairwise sim-

ple majority voting. The arrows point to the alternatives that are beaten under

simple majority voting.

It follows from the characterizations in Banks (1985, Theorem 3.1) and Bar-

berà and Gerber (2017, Theorem 3.1) that any of the attainable alternatives ex-

cept for (1, 0) is the outcome of sophisticated sequential voting under the amend-

ment procedure for some ordering of the alternatives in X(1, 2) = X(2, 1).7

First consider the case where the ordering of the alternatives in X(1, 2) = X(2, 1)

is such that

V ((1, 2), P ) = V ((2, 1), P ) = (0, 0).

Observe that (0, 0) is Pareto dominated by (−,−).

7This can also be verified directly: The ordering ((0, 0), (0, 1), (1, 0), (1, 1)) yields out-

come (0, 0), the ordering ((1, 1), (1, 0), (0, 0), (0, 1)) yields outcome (1, 1) and the ordering

((0, 1), (1, 0), (1, 1), (0, 0)) yields outcome (0, 1). Finally, no ordering gives outcome (1, 0).
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We now solve for the equilibrium collection of sets of continuation agendas.

To do that we proceed backwards starting from the full agendas (1, 2) and (2, 1).

By (E1) it must be that

CE((1, 2), P ) = {(1, 2)} and CE((2, 1), P ) = {(2, 1)}.

Now consider agenda (1). By condition (E1), CE((1), P ) is a nonempty sub-

set of {(1), (1, 2)}. By condition (E2), (1) ∈ CE((1), P ) is ruled out since

agent 1 strictly prefers the equilibrium continuation CE((1, 2), P ) = (1, 2) over

(1). Hence,

CE((1), P ) = {(1, 2)}.

Next consider agenda (2). By condition (E1), CE((2), P ) is a nonempty

subset of {(2), (2, 1)}. By condition (E2), (2) ∈ CE((2), P ) is ruled out since

agent 2 strictly prefers the equilibrium continuation CE((2, 1), P ) = (2, 1) over

(2). Hence,

CE((2), P ) = {(2, 1)}.

Finally, consider the empty agenda. By condition (E1), CE(∅, P ) is a

nonempty subset of {∅} ∪ CE((1), P ) ∪ CE((2), P ) = {∅, (1, 2), (2, 1)}. Since

all agents strictly prefer the empty agenda over any full agenda, ∅ ∈ CE(∅, P )

by (E2). Suppose by way of contradiction that (1, 2) ∈ CE(∅, P ). Then, since

∅ ∈ CE(∅, P ), condition (E3) implies that (1, 2) is rationalizable relative to

the empty agenda ∅. However, no agent prefers agenda (1, 2) over the empty

agenda ∅ or agenda (2, 1). Hence, (1, 2) is not rationalizable which implies that

(1, 2) /∈ CE(∅, P ). Similarly, one proves that (2, 1) /∈ CE(∅, P ). Therefore, we

conclude that

CE(∅, P ) = {∅}.

Thus, in this case the unique consistent equilibrium agenda is empty and no

candidate is nominated and elected.

Now, we develop the same example but under the assumption that the exoge-

nous order of vote under the amendment procedure is such that

V ((1, 2), P ) = V ((2, 1), P ) ∈ {(0, 1), (1, 1)}.
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Observe that (0, 1) is the best alternative for agent 1 and (1, 1) is the best

alternative for agent 3. Therefore, in this case only full agendas are equilibrium

agendas because there is always one agent who is better off by adding an issue

to the agenda that was a free issue before. Hence, for all agendas a, CE(a, P )

contains full agendas only. Thus, in this case any consistent equilibrium agenda

is a full agenda, i.e. both candidates are nominated. However, depending on the

order of vote under the amendment procedure, either both candidates or only

candidate 2 is elected.

This example illustrates a number of notable points: (1) There are voting

procedures and preference profiles for which equilibrium agendas are not full

agendas. (2) The equilibrium collection of sets of continuation agendas can be

very sensitive to the details of the voting rule, and in particular to the use of a

fixed order of vote under sequential voting procedures. (3) As a consequence, if

an agent can choose the order of vote under sequential procedures, he can not

only influence the outcome for a given agenda, but also the set of issues that a

society may choose to leave free.

4 Full Agendas

We start our general analysis by exploring cases where all equilibrium agendas

are full agendas (cf. Dutta et al., 2004). One obvious case is when the voting

procedure has the property that at any preference profile there is one agent for

whom the outcome at any full agenda is this agent’s most preferred alternative.8

This agent will then keep adding issues until a full agenda is reached, i.e. any

equilibrium agenda is a full agenda.

Rather than looking at specific voting procedures we may also ask under which

conditions on individual preferences will there only be full agendas in equilibrium.

To this end let K = {1, . . . , K} be the set of issues and let S be the set of all

preference orderings that satisfy separability and betweenness. Let �i∈ S. Then

8Note that this does not imply that the voting procedure is dictatorial because the selected

agent may change with the preference profile.
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for all k ∈ K there exists a wi
k ∈ {0, 1} such that

(−, xK\{k}) �i (wi
k, xK\{k}) for all x ∈ {0, 1,−}K .

That is, wi
k is the worst position on issue k for agent i. We then say that agent

i is pessimistic about issue k if no position on that issue, i.e. “−”, is almost as

bad as getting the worst position, i.e. wi
k, on issue k.

Definition 4.1 Let �i∈ S. Then i is pessimistic about issue k if for all x ∈
{0, 1,−}K, and for all y ∈ {0, 1,−}K,

y �i (wi
k, xK\{k})

implies that

y �i (−, xK\{k}).

The following theorem shows that if all agents are pessimistic about all issues

and if the voting procedure is Pareto efficient, then all equilibrium agendas are

full agendas.

Theorem 4.1 Let V : A × Sn → X be a Pareto efficient voting procedure,

i.e. V (a, P ) is Pareto efficient in X(a) for all a ∈ A and all P ∈ Sn. If all agents

are pessimistic about all issues, then any equilibrium agenda is a full agenda.

The intuition for Theorem 4.1 is simple: If not deciding on an issue is almost

as bad as getting the worst position on that issue, then nothing prevents an

agent from adding further issues to an agenda. Hence only full agendas can be

equilibrium agendas.

5 Anything Goes

We will now provide a comprehensive analysis of agenda formation under two

prominent families of voting procedures, the amendment procedure, which was

already defined in Section 3, and voting by quota, where there is a majority

vote on the position for every issue on the agenda. Notice that these procedures
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have different properties: Voting by quota is strategy-proof on the domain of

additively separable preferences, but it is not Pareto efficient. By contrast, the

amendment procedure is Pareto efficient, but it is not strategy-proof, i.e. the

equilibrium voting strategies will in general differ from sincere voting even on the

restricted domain of additiely separable preferences.

For both these procedures we will show that apart from some minor qual-

ifications, for any subset F of the set of issues K = {1, . . . , K} there exists

a set of agents {1, . . . , n}, with n odd, and a profile of preference orderings

P = (�1, . . . ,�n) ∈ Pn, such that F is the set of free issues at any consis-

tent equilibrium agenda at P . Thus, neither of the two procedures imposes any

structure on the set of equilibrium agendas.

Amendment Procedure

Suppose voting is according to the amendment procedure for some ordering of the

alternatives and simple majority is used throughout. It turns out that apart from

some minor qualification, for any subset F of the set of issues K = {1, . . . , K}
there exists a set of agents {1, . . . , n}, with n odd, and a profile of separable

preference orderings P = (�1, . . . ,�n) ∈ Sn, such that F is the set of free issues

at any consistent equilibrium agenda at P . The precise result is as follows.

Theorem 5.1 Let n ≥ 3 be odd and let F ⊂ K = {1, . . . , K} be such that

#F > 1 if K = 2.9 Then there exists a profile of separable preferences P ∈ Sn

and some ordering of the alternatives in X(a) for all a ∈ A, such that F is the set

of free issues at any consistent equilibrium agenda a∗ at P if voting is according

to the amendment procedure for the given orderings of the alternatives at any

agenda a.

Voting by Quota

We now consider another class of voting rules, namely voting by quota. Let S̄ ⊂ P
denote the set of strict preference orderings that satisfy additive separability

and betweenness and let q ∈ {1, . . . , n}. Then voting by quota q is the voting

9By “#” we denote the number of elements in a set.
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procedure V : A × S̄n → X, such that for all a ∈ A, for all k ∈ a, and for all

P ∈ S̄n,

(V (a, P ))k =

{
1, if #{i |ui

k(1) > ui
k(0)} ≥ q

0, otherwise
, (5.1)

where (ui
k(·))k∈K is the collection of scalars in the additively separable utility

representation of agent i’s preference ordering �i.
10Observe that (5.1) implies

that V (a, P ) only depends on the issues in a but not on their specific ordering.

Notably, on the restricted domain of additively separable preferences, for any

quota q and for (almost) any set F , there exists a preference profile such that F
is the set of free issues at some equilibrium agenda:

Theorem 5.2 Let V : A × S̄n → X be voting by quota q ∈ {1, . . . , n} and let

F ⊂ K be such that #F > 1 and #F 6= 2 if n is odd and q = n+1
2

. Then there

exists a preference profile P ∈ S̄n such that F is the set of free issues at any

consistent equilibrium agenda a∗ at P .

We will now argue that the conditions in Theorem 5.2 are tight in the sense

that any F ⊂ K that does not satisfy the conditions in the theorem can never

be a set of free issues at an equilibrium agenda. The following proposition deals

with the case where #F = 1 and shows that equilibrium agendas never contain

all but one issue.

Proposition 5.1 Let V : A × S̄n → X be voting by quota q and let P = (�1

, . . . ,�n) ∈ S̄n. If (CE(a, P ))a∈A is an equilibrium collection of sets of continu-

ation agendas and if a∗ ∈ CE(a, P ) for some a ∈ A, then

a∗ /∈ AK−1.

In particular, no a∗ ∈ AK−1 is an equilibrium agenda at P .

We skip the proof of Proposition 5.1 since it is an immediate implication of

Lemma 2.1 and the following result:

10Voting by quota is a special case of a larger class of voting procedures, called voting by

commmittees (Barberà et al., 1991).
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Lemma 5.1 Let V : A × S̄n → X be voting by quota q ∈ {1, . . . , n} and let

P = (�1, . . . ,�n) ∈ S̄n. If (CE(a, P ))a∈A is an equilibrium collection of sets of

continuation agendas, then

CE(a, P ) ⊂ AK for all a ∈ AK−1.

The intuition for Lemma 5.1 is that if there is only one free issue left, then there

is always one agent who is in the winning coalition for that issue. This agent then

is better off adding that issue to the agenda since further additions are impossible

and hence nothing can deter the agent from her initial move.

The following proposition deals with the other exceptional case of simple

majority voting with an odd number of agents, where there can never be only

two free issues at an equilibrium agenda.

Proposition 5.2 Let there be an odd number n of agents and let V : A×S̄n → X

be voting by quota q = n+1
2

. Let P = (�1, . . . ,�n) ∈ S̄n. If (CE(a, P ))a∈A is an

equilibrium collection of sets of continuation agendas, then for all a ∈ A,

CE(a, P ) ⊂ A \
(
AK−1 ∪ AK−2

)
.

In particular, no a∗ ∈ AK−2 is an equilibrium agenda at P , i.e. the set of free

issues at an equilibrium agenda never contains two issues only.

6 Conclusion

Agenda formation is an essential part of many decision-making processes. Before

we take a decision we have to sort out those issues that we want to settle and

those that shall remain unsettled. We have studied the resulting agenda forma-

tion process and have demonstrated that essentially any subset of issues may be

excluded from an equilibrium agenda. This result also holds under the restrictive

assumption that preferences are additively separable and that the voting rule is

Pareto efficient or strategy-proof. We believe that these “anything goes” results

are generic, i.e. except for peculiar rules like the voting procedure that always

selects the best alternative for some voter at any full agenda (see Section 4), we
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do not expect to find another voting procedure where equilibrium agendas of a

particular length do not obtain in general.

Moreover, our candidacy example shows that the equilibrium agenda and the

final outcome of the vote can be very sensitive to the voting rule that is used after

the agenda has been built. Thus, the choice of the voting rule is a delicate matter.

If it is in the hands of a chairperson and even if the chair can only determine the

order of vote for a given sequential voting rule, this power gives new possibilities

for manipulating the final decision.
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Appendix

Proof of Theorem 4.1: Let V : A × Sn → X be a Pareto efficient voting

procedure and let all agents be pessimistic about all issues. Let (CE(a, P ))a∈A

be an equilibrium collection of sets of continuation agendas. We will prove by

backwards induction that CE(a, P ) ⊂ AK for all a ∈ A.

Obviously, the claim is true for any full agenda a ∈ AK . Suppose the claim is

true for all agendas a ∈ A of length l, where m+ 1 ≤ l ≤ K and 1 ≤ m ≤ K − 1.

Let a ∈ Am. By (E1), CE(a, P ) is a nonempty subset of
⋃

k/∈aCE((a, k), P )∪{a}.
By our induction hypothesis CE((a, k), P ) ⊂ AK for all k /∈ a. Suppose by way

of contradiction that a ∈ CE(a, P ). Then by (E2), for all agents i,

V (a, P ) �i V (a′, P ) for all a′ ∈
⋃
k/∈a

CE((a, k), P ).

Let y = V (a′, P ) for some a′ ∈
⋃

k/∈a CE((a, k), P ). Then a′ is a full agenda,

which implies that y ∈ {0, 1}K . Moreover, y is Pareto efficient in {0, 1}K . Let

x = V (a, P ). Then xk = − for all k /∈ a. Since every agent i is pessimistic about

all issues k /∈ a it follows that(
(wi

k)k/∈a, (xk)k∈a
)
�i y for all i.

Let z̄ ∈ {0, 1}K be such that zk = xk for all k ∈ a. Then, by definition of wi
k for

k /∈ a it follows that for all i either

z̄ =
(
(wi

k)k/∈a, (xk)k∈a
)
�i y

or

z̄ �i

(
(wi

k)k/∈a, (xk)k∈a
)
�i y.

This contradicts our assumption that y is Pareto efficient. Hence, a /∈ CE(a, P )

which implies that any agenda in CE(a, P ) is a full agenda. This proves the

theorem.

�
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Proof of Theorem 5.1:

We prove the claim for n = 3 agents and note that the extension to an

arbitrary odd number of agents n > 3 is possible: For any preference profile

(�1,�2,�3) for three agents we can define a preference profile for n > 3 agents,

such that every agent’s preference ordering is either �1,�2 or �3 and such that

the majority relation on X is preserved.11

From now on we assume that n = 3. The proof consists of four steps. Steps

1 and 2 deal with the case where there are at least two free issues. In Step 1

we show that for any K ≥ 2 there exists a preference profile P such that all

K issues are free at any consistent equilibrium agenda at P . in Step 2 we use

a lexicographic extension of the preferences defined in Step 1 to prove that for

K ≥ 3 and #F ≥ 2 there exists a preference profile P such that F is the set

of free issues at any consistent equilibrium agenda. Steps 3 and 4 consider the

case with one free issue. In Step 3 we prove that for K = 3 and #F = 1 there

exists a preference profile P such F is the set of free issues at any consistent

equilibrium agenda. Finally, in Step 4 we use a lexicographic extension of the

preferences defined in Step 2 to extend the case with one free issue from K = 3

to an arbitrary number of issues K ≥ 4.

Step 1: In the following we prove that for any set of issues K = {1, . . . , K} with

K ≥ 2 there exists a preference profile P = (�1,�2,�3) ∈ S3 such that the set of

free issues at any consistent equilibrium agenda is F = K. Note that this means

that ∅ is the unique consistent equilibrium agenda at P .

Let K = F = {1, 2}. Then Section 3 provides an example where F is the set

of free issues at any consistent equilibrium agenda.

Let K = F = {1, 2, 3} and let the agents’ preference orderings be given by

Table 2. Note that the agents’ preferences are separable and satisfy betweenness.

11If n = 5 let the preference orderings �′i for agents i = 1, . . . , 5, be given by �′i=�1 for

i = 1, 2, �′i=�2 for i = 3, 4, and �′5=�3. If n ≥ 7 let m ∈ N and k ∈ {0, 1, 2} be such that

n = 3m + k, and let the preference orderings �′i for agents i = 1, . . . , n, be given by �′i=�1

for i = 1, . . . ,m, �′i=�2 for i = m + 1, . . . , 2m, and �′i=�3 for i = 2m + 1, . . . , n. Let M

be the simple majority relation at the preference profile (�1,�2,�3) and let M ′ be the simple

majority relation at the preference profile (�′1, . . . ,�′n). Then it is straightforward to show that

for all x, y ∈ X, xMy if and only if xM ′y.
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It is immediate to see that there is a Condorcet winner for any agenda a which

is the alternative that has position 1 for each issue on the agenda. Thus, for any

agenda a ∈ A the voting outcome under the amendment procedure satisfies

(V (a, P ))k = 1 for all k ∈ a.

We now solve backwards for the equilibrium collection of sets of continuation

agendas. By (E1) it follows that

CE(a, P ) = {a}

for all full agendas a.

Now consider an agenda a of length 2. By condition (E1), CE(a, P ) is a

nonempty subset of {a} ∪CE((a, k), P ) = {a, (a, k)}, where k /∈ a. By condition

(E2), a ∈ CE(a, P ) is ruled out since there is always one agent who strictly

prefers (1, 1, 1), which is the voting outcome at agenda (a, k), over x with xk = −
and xl = 1 for all l 6= k, which is the voting outcome at agenda a. Hence,

CE(a, P ) = {(a, k)}.

Next consider an agenda a of length 1, i.e. a = (k) for some k ∈ {1, 2, 3}.
Let h, l /∈ a, h 6= l. By condition (E1), CE((k), P ) is a nonempty subset of

{(k)} ∪ CE((k, h), P ) ∪ CE((k, l), P ) = {(k), (k, h, l), (k, l, h)}. By condition

(E2), (k) ∈ CE((k), P ) is ruled out since there is always one agent who strictly

prefers (1, 1, 1), which is the voting outcome at agendas (k, h, l) or (k, l, h), over

x with xk = 1 and xl = xh = −, which is the voting outcome at agenda (k).

Hence,

CE((k), P ) ⊂ {(k, h, l), (k, l, h)}.

Finally, consider the empty agenda. By condition (E1), CE(∅, P ) is a nonempty

subset of {∅} ∪
⋃3

k=1 CE((k), P ). Since all agendas in CE((k), P ) for k =

1, 2, 3, are full agendas with voting outcome (1, 1, 1) and all agents strictly prefer

(−,−,−) over (1, 1, 1), all agents prefer the empty agenda over any full agenda.

By (E2) this implies that ∅ ∈ CE(∅, P ).

It remains to prove that ∅ is the unique consistent equilibrium agenda. Sup-

pose by way of contradiction that a ∈ CE(∅, P ) for some a 6= ∅. Then a must
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�1 �2 �3

(1, 1, 0) (1, 0, 1) (0, 1, 1)

(1, 1,−) (−, 0, 1) (−, 1, 1)

(1,−, 0) (1, 0,−) (0,−, 1)

(1,−,−) (0, 0, 1) (0, 1,−)

(1, 0, 0) (−, 0,−) (−, 1,−)

(−, 1, 0) (1,−, 1) (0,−,−)

(−, 1,−) (1,−,−) (−,−, 1)

(0, 1, 0) (−,−, 1) (−,−,−)

(0, 1,−) (0,−, 1) (1, 1, 1)

(−,−, 0) (−,−,−) (1,−, 1)

(0,−, 0) (1, 1, 1) (1, 1,−)

(−, 0, 0) (1, 1,−) (1,−,−)

(0, 0, 0) (−, 1, 1) (0, 0, 1)

(−,−,−) (−, 1,−) (0, 0,−)

(1, 1, 1) (0, 1, 1) (−, 0, 1)

(1, 0,−) (0, 0,−) (−, 0,−)

(1,−, 1) (1, 0, 0) (1, 0, 1)

(−, 1, 1) (1,−, 0) (1, 0,−)

(−,−, 1) (−, 0, 0) (0, 1, 0)

(1, 0, 1) (0,−,−) (−, 1, 0)

(−, 0,−) (0, 1,−) (0,−, 0)

(−, 0, 1) (0, 0, 0) (−,−, 0)

(0, 1, 1) (−,−, 0) (1, 1, 0)

(0,−,−) (0,−, 0) (1,−, 0)

(0, 0,−) (1, 1, 0) (0, 0, 0)

(0,−, 1) (−, 1, 0) (−, 0, 0)

(0, 0, 1) (0, 1, 0) (1, 0, 0)

Table 2: Preference profile for K = F = {1, 2, 3}.
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be a full agenda and since ∅ ∈ CE(∅, P ), condition (E3) implies that a is ratio-

nalizable relative to the empty agenda ∅. However, no agent prefers the voting

outcome at a full agenda over the voting outcome at the empty agenda ∅ or any

other full agenda a′ which could be in CE(∅, P ). Hence, a is not rationalizable

which implies that a /∈ CE(∅, P ). Hence, we conclude that

CE(∅, P ) = {∅}.

Thus, in this case the unique consistent equilibrium agenda is empty and the set

of free issues is given by K.

Let K = F = {1, 2, 3, 4}. We take the preference orderings �i for two issues

in Table 1 (Section 3) and extend them in a lexicographic way to preference

orderings �′i on {0, 1,−}K: For i = 1, 2, 3, let �′i be such that

(x1, x2, x3, x4) �′i (y1, y2, y3, y4)

if and only if

(x1, x2) �i (y1, y2)

or

(x1, x2) = (y1, y2) and (x3, x4) �i (y3, y4).

For illustration Table 3 gives the agents’ preference orderings on {0, 1}K.

Next we determine the voting outcome at all agendas. At the empty agenda

(−,−,−,−) is the unique attainable alternative which implies that

V (∅, P ) = (−,−,−,−).

At agenda (k) for k ∈ {1, 2, 3, 4} there are only two attainable alternatives, x and

y with xk = 1, yk = 0 and xl = yl = − for l 6= k. If k ∈ {1, 3}, then agents 2 and

3 prefer position 1 over position 0 for issue k which implies that

V ((1), P ) = (1,−,−,−) and V ((3), P ) = (−,−, 1,−).

If k ∈ {2, 4}, then agents 1 and 3 prefer position 1 over position 0 for issue k

which implies that

V ((2), P ) = (−, 1,−,−) and V ((4), P ) = (−,−,−, 1).
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�′1 �′2 �′3
(0, 1, 0, 1) (1, 0, 1, 0) (1, 1, 1, 1)

(0, 1, 0, 0) (1, 0, 0, 0) (1, 1, 0, 1)

(0, 1, 1, 1) (1, 0, 1, 1) (1, 1, 1, 0)

(0, 1, 1, 0) (1, 0, 0, 1) (1, 1, 0, 0)

(0, 0, 0, 1) (0, 0, 1, 0) (0, 1, 1, 1)

(0, 0, 0, 0) (0, 0, 0, 0) (0, 1, 0, 1)

(0, 0, 1, 1) (0, 0, 1, 1) (0, 1, 1, 0)

(0, 0, 1, 0) (0, 0, 0, 1) (0, 1, 0, 0)

(1, 1, 0, 1) (1, 1, 1, 0) (1, 0, 1, 1)

(1, 1, 0, 0) (1, 1, 0, 0) (1, 0, 0, 1)

(1, 1, 1, 1) (1, 1, 1, 1) (1, 0, 1, 0)

(1, 1, 1, 0) (1, 1, 0, 1) (1, 0, 0, 0)

(1, 0, 0, 1) (0, 1, 1, 0) (0, 0, 1, 1)

(1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 0, 1)

(1, 0, 1, 1) (0, 1, 1, 1) (0, 0, 1, 0)

(1, 0, 1, 0) (0, 1, 0, 1) (0, 0, 0, 0)

Table 3: Lexicographic extension of the preference orderings in Table 1 to {0, 1}K

for K = {1, 2, 3, 4}.
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Next we determine the voting outcome at all agendas of length 2. The analysis of

case K = 2 implies that there exists an ordering of the alternatives in {0, 1}{1,2}

such that

V ((1, 2), P ) = V ((2, 1), P ) = (0, 0,−,−).

Similarly, there exists an ordering of the alternatives in {0, 1}{3,4} such that

V ((3, 4), P ) = V ((3, 4), P ) = (−,−, 0, 0).

Consider agendas (2, 3) and (3, 2). Then (−, 1, 1,−) �′i (−, 0, x3,−) for all x3 ∈
{0, 1} and i = 1, 3, and (−, 1, 1,−) �′i (−, 1, 0,−) for i = 2, 3. Hence, (−, 1, 1,−)

is the Condorcet winner in X(2, 3) which implies that

V ((2, 3), P ) = V ((3, 2), P ) = (−, 1, 1,−).

Similarly, we derive

V ((1, 3), P ) = V ((3, 1), P ) = (1,−, 1,−),

V ((1, 4), P ) = V ((4, 1), P ) = (1,−,−, 1),

V ((2, 4), P ) = V ((4, 2), P ) = (−, 1,−, 1).

Next consider all agendas of length 3. Let a ∈ A3 with 4 /∈ a. We will

now argue that there exists an ordering of the alternatives in X(a) such that

(0, 0, 1,−) is the voting outcome under the amendment procedure. To see this

note that by definition of the preference orderings �′i, under simple majority vot-

ing (0, 0, 1,−) is dominated by (1, 0, x3,−) and (0, 1, x3,−) for all x3 ∈ {0, 1} and

(0, 0, 1,−) dominates all remaining alternatives in X(a). Moreover, (1, 0, x3,−)

and (0, 1, x3,−) are dominated by (1, 1, 1,−) for all x3 ∈ {0, 1}. It follows from

the characterizations in Banks (1985, Theorem 3.1) and Barberà and Gerber

(2017, Theorem 3.1) that there exists an ordering of the alternatives in X(a)

such that (0, 0, 1,−) is the voting outcome under the amendment procedure. We

take this ordering and get

V (a, P ) = (0, 0, 1,−) for all a ∈ A3 with 4 /∈ a.

In a similar way one shows that for all a ∈ A3 with 4 ∈ a there exist orderings of

the alternatives in X(a) such that

V (a, P ) = (−, 1, 0, 0) for all a ∈ A3 with 1 /∈ a,
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V (a, P ) = (1,−, 0, 0) for all a ∈ A3 with 2 /∈ a,

V (a, P ) = (0, 0,−, 1) for all a ∈ A3 with 3 /∈ a.

Finally, we determine the voting outcome at all full agendas a ∈ A4. Note

that by definition of the preference orderings �′i, under simple majority voting

(0, 0, 0, 0) is dominated by (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, x3, x4) and (0, 1, x3, x4) for

all x3, x4 ∈ {0, 1}, while (0, 0, 0, 0) dominates all remaining alternatives in X(a).

Moreover, (1, 1, 1, 1) dominates (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, x3, x4) and (0, 1, x3, x4)

for all x3, x4 ∈ {0, 1}. Again we use the characterizations in Banks (1985, The-

orem 3.1) and Barberà and Gerber (2017, Theorem 3.1) to conclude that there

exists an ordering of the alternatives in X(a) such that (0, 0, 0, 0) is the voting

outcome under the amendment procedure. We take this ordering and get

V (a, P ) = (0, 0, 0, 0) for all a ∈ A4.

We now solve backwards for the equilibrium collection of sets of continuation

agendas. By (E1) it follows that

CE(a, P ) = {a} for all a ∈ A4.

Now consider an agenda of length 3. Let a ∈ A3 and let 1 /∈ a. By condition

(E1), CE(a, P ) is a nonempty subset of {a} ∪ CE((a, 1), P ) = {a, (a, 1)}. By

condition (E2), a ∈ CE(a, P ) is ruled out since agent 2 strictly prefers the voting

outcome at agenda (a, 1), which is (0, 0, 0, 0) over the voting outcome at agenda

a which is (−, 1, 0, 0). Hence,

CE(a, P ) = {(a, 1)}.

In the same way one proves that

CE(a, P ) = {(a, k)} for all k /∈ a.

Next consider agendas of length 2. To begin with, let a ∈ {(1, 2), (2, 1)}.
By condition (E1), CE(a, P ) is a nonempty subset of {a} ∪ CE((a, 3), P ) ∪
CE((a, 4), P ) = {a, (a, 3, 4), (a, 4, 3)}. By condition (E2), a ∈ CE(a, P ) since

all agents prefer the outcome under (a), which is (0, 0,−,−), over the outcome
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under (a, 3, 4) or (a, 4, 3) which is (0, 0, 0, 0). Moreover, given a ∈ CE(a, P ) none

of the agendas (a, 3, 4) or (a, 4, 3) is rationalizable relative to a and hence (E3)

implies that

CE((1, 2), P ) = {(1, 2)} and CE((2, 1), P ) = {(2, 1)}.

In a similar way it follows that

CE((3, 4), P ) = {(3, 4)} and CE((4, 3), P ) = {(4, 3)}.

Let a ∈ {(1, 3), (3, 1)}. By condition (E1), CE(a, P ) is a nonempty subset

of {a} ∪ CE((a, 2), P ) ∪ CE((a, 4), P ) = {a, (a, 2, 4), (a, 4, 2)}. By (E2), a ∈
CE(a, P ) is ruled out since agent 1 strictly prefers the voting outcome at any

full agenda, which is (0, 0, 0, 0), over the voting outcome at agenda a, which is

(1,−, 1,−). Hence,

CE((1, 3), P ), CE((3, 1), P ) ⊂ A4.

In a similar way it follows that

CE((1, 4), P ), CE((4, 1), P ) ⊂ A4,

CE((2, 3), P ), CE((3, 2), P ) ⊂ A4,

CE((2, 4), P ), CE((4, 2), P ) ⊂ A4.

Next consider agendas of length 1. To begin with, let a = (1). By condition

(E1), CE((1), P ) is a nonempty subset of {(1)} ∪
⋃4

k=2 CE((1, k), P ). By (E2),

(1) ∈ CE((1), P ) is ruled out since agent 2 strictly prefers the voting outcome

at agenda (1, 2) ∈ CE((1, 2), P ), which is (0, 0,−,−), over the voting outcome

at agenda (1), which is (1,−,−,−). Moreover, any agenda in CE((1, 3), P ) or

CE((1, 4), P ) is a full agenda with voting outcome (0, 0, 0, 0). If any such agenda

were in CE((1), P ), then (1, 2) is rationalizable relative to (1) since all agents

prefer the voting outcome under (1, 2), which is (0, 0,−,−), over (0, 0, 0, 0). (E3)

then requires that (1, 2) ∈ CE((1), P ) which in turn implies that no agenda in

CE((1, 3), P ) or CE((1, 4), P ) is rationalizable. By (E3) we conclude that no

agenda in CE((1, 3), P ) or CE((1, 4), P ) belongs to CE((1), P ). Hence,

CE((1), P ) = {(1, 2)}.

30



In a similar way it follows that

CE((2), P ) = {(2, 1)},

CE((3), P ) = {(3, 4)},

CE((4), P ) = {(4, 3)}.

Finally, consider the empty agenda. By condition (E1), CE(∅, P ) is a

nonempty subset of {∅}∪
⋃4

k=1 CE((k), P ) = {∅, (1, 2), (2, 1), (3, 4), (4, 3)}. Since

all agents strictly prefer the voting outcome under the empty agenda, which

is (−,−,−,−), over the voting outcome under agendas (1, 2) or (2, 1), which

is (0, 0,−,−), and the voting outcome under agendas (3, 4) or (4, 3) which is

(−,−, 0, 0), it follows that ∅ ∈ CE(∅, P ) by (E2).

It remains to prove that ∅ is the unique consistent equilibrium agenda. To

this end note that (E3) implies that if any of the agendas (1, 2), (2, 1), (3, 4), (4, 3)

is in CE(∅, P ), then it must be rationalizable. However, the voting outcome

under agendas (3, 4) and (4, 3) is (−,−, 0, 0) which is strictly worse for all agents

than the voting outcome under the empty agenda, which is (−,−,−,−), and the

voting outcome under agendas (1, 2) and (2, 1), which is (0, 0,−,−). This implies

that neither (3, 4) nor (4, 3) is rationalizable and by (E3) neither of these agendas

is in CE(∅, P ). But then neither (1, 2) nor (2, 1) are rationalizable relative to

∅ because all agents strictly prefer (−,−,−,−) over the voting outcome under

agendas (1, 2) and (2, 1), which is (0, 0,−,−). Hence, (E3) implies that

CE(∅, P ) = {∅}.

Thus, the unique consistent equilibrium agenda is empty and the set of free issues

is given by K = {1, 2, 3, 4}.

Let K = F = {1, 2, 3, 4, 5}. We then construct a preference profile using the

preference orderings in Table 1 and Table 2. For i = 1, 2, 3, let �2
i be agent i’s

preference ordering in Table 1 and let �3
i be agent i’s preference ordering in Table

2. We extend these preferences in a lexicographic way to preference orderings �′i
on {0, 1,−}K: For i = 1, 2, 3, let �′i be such that

(x1, x2, x3, x4, x5) �′i (y1, y2, y3, y4, y5)
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if and only if

(x1, x2) �2
i (y1, y2)

or

(x1, x2) = (y1, y2) and (x3, x4, x5) �3
i (y3, y4, y5).

Then, similar to case K = F = {1, 2, 3, 4} above we can show that the unique

consistent equilibrium agenda is empty and hence the set of free issues is given

by K = {1, 2, 3, 4, 5}.
Let K = F = {1, . . . , K} with K ≥ 6. Then either K is even or K =

2m + 3 for some m > 1. In both cases we can proceed as in the previous

two cases with K = 4 and K = 5 to construct an example with three agents

and separable preferences such that all issues are free at the unique consistent

equilibrium agenda. We simply extend the agents’ preference orderings for K = 2

and K = 3 in a lexicographic way to preference orderings for the given number

of issues.

Step 2: Let K = {1, . . . , K} with K ≥ 3 and let F = {1, . . . , F} ⊂ K with

F ≥ 2. We will prove that there exists a preference profile P = (�1,�2,�3) ∈ S3

such that the set of free issues at the unique consistent equilibrium agenda is F .

To this end take the preference orderings �i used for the case K = F in Step 1

and extend them in a lexicographic way to preference orderings �′i on {0, 1,−}K:

For i = 1, 2, 3, let �′i be such that

(x1, . . . , xK) �′i (y1, . . . , yK)

if and only if one of the following two conditions is satisfied:

(i) There exists some l with F + 1 ≤ l ≤ K, such that xk = yk for k =

F + 1, . . . , l − 1, and either

xl = 1 and yl ∈ {−, 0}

or xl = − and yl = 0.

(ii) xk = yk for k = F + 1, . . . , K, and

(x1, . . . , xF ) �i (y1, . . . , yF ).
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Hence, all agents first consider the positions on issues F + 1, . . . , K (in that or-

der) and all prefer position 1 over − and − over 0 on these issues. Only if two

alternatives have the same positions on all issues F + 1, . . . , K, the positions on

the remaining issues are relevant. In that case agent i’s preference over the alter-

natives is determined by the preference �i over the positions on issues 1, . . . , F .

Then, by Pareto efficiency of the amendment procedure, (V (a, P ))k = 1 for all

agendas a with k ∈ a and k ∈ {F + 1, . . . , K} independent of the ordering of the

alternatives in X(a) under the amendment procedure. Moreover, any consistent

equilibrium agenda a must contain all issues in {F + 1, . . . , K}. Suppose this

were not true, i.e. there exists a consistent equilibrium agenda a with k /∈ a for

some k ∈ {F + 1, . . . , K}. Lemma 2.1 implies that a ∈ CE(a, P ). Hence, by

(E2) it must be true that for all i and for all a′ ∈ CE((a, k), P )),

V (a, P ) �i V (a′, P ).

However, by definition of �i this is impossible since (V (a′, P ))k = 1 and

(V (a, P ))k = −. Therefore, we conclude that any consistent equilibrium agenda

contains all issues in {F + 1, . . . , K}. We will now prove that there are no addi-

tional issues on any consistent equilibrium agenda if the order of vote under the

amendment procedure is chosen in an appropriate way.

Let (CE(a, P ))a∈A be any consistent equilibrium collection of sets of contin-

uation agendas and let a be any agenda that is a permutation of (F + 1, . . . , K).

Then, given the definition of agents’ preferences, Step 1 implies that there exists

an order of vote under the amendment procedure, such that

CE(a, P ) = {a} (6.2)

Moreover, all such agendas a yield the same voting outcome x with xk = 1 for

all k = F + 1, . . . , K, and xk = − for all k = 1, . . . , K.

Let a′ be any agenda that is either empty or only contains issues in {F +

1, . . . , K}. We will prove by backwards induction over the number of issues in a′,

that any agenda in CE(a′, P ) is a permutation of (F + 1, . . . , K). (6.2) implies

that the claim is true if a′ is a permutation of (F + 1, . . . , K). Now suppose the

claim is true for all agendas that contain at least l + 1 issues in {F + 1, . . . , K}
and no issues in {1, . . . , K}, where 0 ≤ l < K − F . Let a′ = (a1, . . . , al) be
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an agenda with a1, . . . , al ∈ {F + 1, . . . , K}. Since a′ does not contain all is-

sues in {F + 1, . . . , K}, (E1) implies that CE(a′, P ) is a nonempty subset of⋃
k/∈a′ CE((a′, k), P ). By the induction hypothesis any agenda in CE((a′, k), P )

is a permutation of (F + 1, . . . , K) for all k /∈ a′ with k ∈ {F + 1, . . . , K}. By

definition of the agents’ preferences and the proof in Step 1 it follows that there

exists an order of vote under the amendment procedure, such that all agents have

the same preferences over voting outcomes V (a′′, P ) for all a′′ ∈ CE((a′, k), P )

and for all k /∈ a′. Moreover, all agents prefer V (a, P ), where a is some per-

mutation of (F + 1, . . . , K), over V (a′′, P ) for any agenda a′′ ∈ CE((a′, k), P )

for all k ∈ {1, . . . , F}, k /∈ a′. Hence, the voting outcomes V (a′′, P ) for all

a′′ ∈ CE((a′, k), P ) and for all k ∈ {1, . . . , K}, k /∈ a′, are Pareto ranked with

V (a′′, P ) being preferred over V (a′′′, P ) for all a′′ ∈ CE((a′, k), P ) with k /∈ a′

and k ∈ {F + 1, . . . , K}, and for all a′′′ ∈ CE((a′, k′), P ) for all k′ /∈ a′ and

k′ ∈ {1, . . . , F}. Therefore, consistency (E3) implies that

CE(a′, P ) ⊂
⋃

k/∈a′,k∈{F+1,...,K}

CE((a′, k), P ).

Hence, by the induction hypothesis any agenda in CE(a′, P ) is a permutation of

(F + 1, . . . , K). This proves the claim.

We conclude that any agenda in CE(∅, P ) is a permutation of (F +1, . . . , K),

i.e. the set of free issues at any consistent equilibrium agenda is given by F .

Step 3: Let K = {1, 2, 3} and #F = 1. W.l.o.g. let F = {3}. We will prove that

there exists a preference profile P = (�1,�2,�3) ∈ S3 such that the set of free

issues at the unique consistent equilibrium agenda is F = {3}. Let preference

orderings be given by Table 4. Note that the agents’ preferences are separable

and satisfy betweenness.

In order to solve for the equilibrium agendas we first determine the voting

outcome at all agendas. At the empty agenda (−,−,−) is the unique attainable

alternative which implies that

V (∅, P ) = (−,−,−).

At agenda (1) there are only two attainable alternatives, (1,−,−) and (0,−,−).
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�1 �2 �3

(0, 1, 1) (1, 0, 1) (1, 1, 0)

(0,−, 1) (−, 0, 1) (1,−, 0)

(0, 0, 1) (0, 0, 1) (1, 1,−)

(0, 1,−) (1, 0,−) (1,−,−)

(0,−,−) (−, 0,−) (−, 1, 0)

(0, 0,−) (1,−, 1) (0, 1, 0)

(−, 1, 1) (0, 0,−) (−,−, 0)

(1, 1, 1) (1,−,−) (−, 1,−)

(−, 1,−) (1, 1, 1) (0, 1,−)

(1, 1,−) (−,−, 1) (0,−, 0)

(−,−, 1) (−, 1, 1) (1, 0, 0)

(−, 0, 1) (0,−, 1) (−,−,−)

(1,−, 1) (0, 1, 1) (1, 0,−)

(−,−,−) (−,−,−) (0,−,−)

(−, 0,−) (1, 1,−) (−, 0, 0)

(1, 0, 1) (0,−,−) (0, 0, 0)

(1,−,−) (1, 0, 0) (−, 0,−)

(1, 0,−) (1,−, 0) (0, 0,−)

(0, 1, 0) (−, 0, 0) (1, 1, 1)

(−, 1, 0) (−,−, 0) (1,−, 1)

(0,−, 0) (−, 1,−) (−, 1, 1)

(0, 0, 0) (0, 0, 0) (−,−, 1)

(−,−, 0) (0,−, 0) (0, 1, 1)

(−, 0, 0) (0, 1,−) (0,−, 1)

(1, 1, 0) (1, 1, 0) (1, 0, 1)

(1,−, 0) (−, 1, 0) (−, 0, 1)

(1, 0, 0) (0, 1, 0) (0, 0, 1)

Table 4: Preference orderings for K = {1, 2, 3} and F = {3}.
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Since agents 2 and 3 prefer (1,−,−) over (0,−,−) it follows that

V ((1), P ) = (1,−,−).

At agenda (2) there are only two attainable alternatives, (−, 1,−) and (−, 0,−).

Since agents 1 and 3 prefer (−, 1,−) over (−, 0,−) it follows that

V ((2), P ) = (−, 1,−).

At agenda (3) there are only two attainable alternatives, (−,−, 1) and (−,−, 0).

Since agents 2 and 3 prefer (−,−, 1) over (−,−, 0) it follows that

V ((3), P ) = (−,−, 1).

Next we consider all agendas of length 2. At agendas, (1, 2) and (2, 1) the attain-

able set is

X(1, 2) = X(2, 1) = {(0, 0,−), (0, 1,−), (1, 0,−), (1, 1,−)}.

Note that under simple majority voting (0, 0,−) is dominated by (0, 1,−) and

(1, 0,−), where both of the latter agendas are dominated by (1, 1,−) which in

turn is dominated by (0, 0,−). Hence, using the characterization results in Banks

(1985, Theorem 3.1) and Barberà and Gerber (2017, Theorem 3.1) we conclude

that (0, 0,−) is the outcome under the amendment procedure for some ordering

of the alternatives.12 If we take this ordering of vote under the amendment

procedure we obtain

V ((1, 2), P ) = V ((2, 1), P ) = (0, 0,−).

At agendas (1, 3) and (3, 1) the attainable set is

X(1, 3) = X(3, 1) = {(0,−, 0), (0,−, 1), (1,−, 0), (1,−, 1)}.

Since (1,−, 1) dominates any other attainable alternative in pairwise simple ma-

jority voting it is the unique outcome under the amendment procedure for any

ordering of the alternatives. Hence, we have

V ((1, 3), P ) = V ((3, 1), P ) = (1,−, 1).

12The reader may also verify directly that (0, 0,−) is the outcome if voting takes place in the

ordering ((0, 0,−), (0, 1,−), (1, 0,−), (1, 1,−)) or ((0, 0,−), (1, 0,−), (0, 1,−), (1, 1,−)).
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Similarly, at agendas (2, 3) and (3, 2) the attainable set is

X(2, 3) = X(3, 2) = {(−, 0, 0), (−0, 1), (−, 1, 0), (−, 1, 1)}

and (−, 1, 1) dominates any other attainable alternative in pairwise simple ma-

jority voting. It is therefore the unique outcome under the amendment procedure

for any ordering of the alternatives and we get

V ((2, 3), P ) = V ((3, 2), P ) = (−, 1, 1).

Finally, consider all full agendas. The attainable set at any full agenda a ∈ A3 is

X(a) = {(1, 1, 1), (1, 1, 0), (1, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0), (0, 0, 1), (0, 0, 0)}.

Note that (0, 0, 1) is the unique alternative that dominates (1, 1, 1) under pairwise

simple-majority voting. Since (0, 0, 1) is dominated by (1, 0, 1) which in turn is

dominated by (1, 1, 1), the characterizations in Banks (1985, Theorem 3.1) and

Barberà and Gerber (2017, Theorem 3.1) imply that there exists an ordering of

the alternatives in X(a) such that (1, 1, 1) is the outcome under the amendment

procedure. Hence, for this ordering

V (a, P ) = (1, 1, 1) for all a ∈ A3.

We now solve backwards for the equilibrium collection of sets of continuation

agendas. By (E1) it follows that

CE(a, P ) = {a} for all a ∈ A3.

Now consider an agenda a ∈ {(1, 2), (2, 1)}. By condition (E1), CE(a, P ) is a

nonempty subset of {a} ∪ CE((a, 3), P ) = {a, (a, 3)}. Since all agents prefer

(0, 0,−) over (1, 1, 1) condition (E2) implies that a ∈ CE(a, P ). Moreover, in

this case (a, 3) is not rationalizable. Hence, by (E3) we get

CE((1, 2), P ) = {(1, 2)} and CE((2, 1), P ) = {(2, 1)}.

Next consider an agenda a ∈ {(1, 3), (3, 1)}. By condition (E1), CE(a, P ) is a

nonempty subset of {a} ∪ CE((a, 2), P ) = {a, (a, 2)}. By condition (E2), a ∈
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CE(a, P ) is ruled out since agent 1 strictly prefers the voting outcome at agenda

(a, 2) over the voting outcome at agenda a. Hence,

CE((1, 3), P ) = {(1, 3, 2)} and CE((3, 1), P ) = {(3, 1, 2)}.

Next consider an agenda a ∈ {(2, 3), (3, 2)}. By condition (E1), CE(a, P ) is a

nonempty subset of {a} ∪ CE((a, 1), P ) = {a, (a, 1)}. By condition (E2), a ∈
CE(a, P ) is ruled out since agent 2 strictly prefers the voting outcome at agenda

(a, 1) over the voting outcome at agenda a. Hence,

CE((2, 3), P ) = {(2, 3, 1)} and CE((3, 2), P ) = {(3, 2, 1)}.

We then move to agendas of length 1. By condition (E1), CE((1), P ) is a

nonempty subset of {(1)} ∪CE((1, 2), P )∪CE((1, 3), P ) = {(1), (1, 2), (1, 3, 2)}.
By condition (E2), (1) ∈ CE((1), P ) is ruled out since agent 1 strictly prefers the

voting outcome at agenda (1, 2) over the voting outcome at agenda (1). Suppose

by way of contradiction that (1, 3, 2) ∈ CE((1), P ). Then (1, 2) is rationalizable

and (E3) implies that (1, 2) ∈ CE((1), P ) and that (1, 3, 2) must be rationaliz-

able. However, the latter is not true since all agents prefer the voting outcome

at agenda (1, 2) over the outcome at agenda (1, 3, 2). Contradiction. Hence,

(1, 3, 2) /∈ CE((1), P ) and we conclude that

CE((1), P ) = {(1, 2)}.

By condition (E1), CE((2), P ) is a nonempty subset of {(2)} ∪ CE((2, 1), P ) ∪
CE((2, 3), P ) = {(2), (2, 1), (2, 3, 1)}. By condition (E2), (2) ∈ CE((2), P ) is

ruled out since agent 2 strictly prefers the voting outcome at the full agenda

(2, 3, 1) over the voting outcome at agenda (2). We conclude that

CE((2), P ) ⊂ {(2, 1), (2, 3, 1)}.

Suppose by way of contradiction that (2, 3, 1) ∈ CE((2), P ). Since all agents pre-

fer the voting outcome (0, 0,−) at agenda (2, 1) over the voting outcome (1, 1, 1, )

at agenda (2, 3, 1) it follows that (2, 1) is rationalizable. (E3) then implies that

(2, 1) ∈ CE((2), P ) and that (2, 3, 1) is rationalizable. However, the latter is not

true since no agent prefers (1, 1, 1) over (0, 0,−). Contradiction. Therefore, we

conclude that

CE((2), P ) = {(2, 1)}.
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By condition (E1), CE((3), P ) is a nonempty subset of {(3)} ∪ CE((3, 1), P ) ∪
CE((3, 2), P ) = {(3), (3, 1, 2), (3, 2, 1)}. By condition (E2), (3) ∈ CE((3), P ) is

ruled out since agent 1 strictly prefers the voting outcome at any full agenda over

the voting outcome at agenda (3). We conclude that

CE((3), P ) ⊂ {(3, 1, 2), (3, 2, 1)},

where all these agendas give the same outcome (1, 1, 1).

Finally, consider the empty agenda ∅. By condition (E1), CE(∅, P ) is a

nonempty subset of {∅} ∪
⋃3

k=1 CE((k), P ), where CE((1), P ) = {(1, 2)} and

CE((2), P ) = {(2, 1)} both give voting outcome (0, 0,−), and CE((3), P ) con-

tains full agendas only, which give outcome (1, 1, 1). Since agent 1 strictly prefers

(0, 0,−) over (−,−,−), (E2) implies that ∅ /∈ CE(∅, P ). Suppose by way of

contradiction that CE(∅, P ) contains a full agenda. Since all agents strictly pre-

fer (0, 0,−) over (1, 1, 1), agenda (1, 2) is rationalizable and hence is an element

of CE(∅, P ) by (E3). Moreover, in this case no full agenda is rationalizable and

hence CE(∅, P ) must not contain any full agenda. From this contradiction we

conclude that

CE(∅, P ) ⊂ {(1, 2), (2, 1)}.

Thus, in this case the set of free issues at any consistent equilibrium agenda is

F = {3}.

Step 4: Let K = {1, . . . , K} with K ≥ 4 and let #F = 1. W.l.o.g. let F = {3}.
We will prove that there exists a preference profile P = (�1,�2,�3) ∈ S3 such

that the set of free issues at any consistent equilibrium agenda is F = {3}.
To this end take the preference orderings �i in Table 4 and extend them in a

lexicographic way to preference orderings �′i on {0, 1,−}K: For i = 1, 2, 3, let �′i
be such that

(x1, . . . , xK) �′i (y1, . . . , yK)

if and only if one of the following two conditions is satisfied:

(i) There exists some l with 4 ≤ l ≤ K, such that xk = yk for k = 4, . . . , l− 1,

and either

xl = 1 and yl ∈ {−, 0}

or xl = − and yl = 0.
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(ii) xk = yk for k = 4, . . . , K, and

(x1, x2, x3) �i (y1, y2, y3).

Hence, all agents first consider the positions on issues 4, . . . , K (in that order)

and all prefer position 1 over − over 0 on these issues. Only if two alternatives

have the same positions on all issues 4, . . . , K, the positions on the remaining

issues 1, 2, 3, are relevant. In that case agent i’s preference over the alternatives

is determined by the preference �i over the positions on issues 1, 2, 3.

Then, by Pareto efficiency of the amendment procedure, (V (a, P ))k = 1 for

all agendas a with k ∈ a and k ∈ {4, . . . , K} independent of the ordering of

the alternatives in X(a) under the amendment procedure. Then, analogously

to Step 2, we can use the findings from Step 3 for K = {1, 2, 3} to prove that

for any agenda a ∈ A there exists an order of vote over the alternatives in X(a)

under the amendment procedure, such that the set of free issues at any consistent

equilibrium agenda is F = {3}.
�

Proof of Theorem 5.2: Let V : A×S̄n → X be voting by quota q ∈ {1, . . . , n}
and let F = ∅. Take any preference ordering �∈ S̄ and let P = (�1, . . . ,�n)

be such that �i =� for all i = 1, . . . , n. Then, for all a ∈ A \ AK and for all

a′ = (a, k, . . .) with k /∈ a,

V (a′, P ) �i V (a, P ). (6.3)

Let (CE(a, P ))a∈A be any consistent equilibrium collection of sets of continuation

agendas. (6.3) and (E2) then imply that a /∈ CE(a, P ) for all a ∈ A \AK and we

conclude that

CE(∅, P ) ⊂ AK

by Lemma 2.1. Hence, there are no free issues at any equilibrium agenda at P .

Now let ∅ 6= F ⊂ K be such that #F 6= 1 and #F 6= 2 if n is odd and

q = n+1
2

. Let r = #F and w.l.o.g. let F = {1, . . . , r}.
We first consider the case where r ≤ n. In this case, for all i, choose (ui

k(·))k∈K
such that

ui
k(1) > ui

k(−) > ui
k(0) for all k /∈ F . (6.4)
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If q ≥ n+1
2

, let {W1 . . . ,Wr} be a partition of the set of agents {1, . . . , n} into

nonempty subsets Wh, h = 1, . . . , r, such that #Wh < q for all h = 1, . . . , r.

Observe that such a partition exists for any n and any q ≥ n+1
2

if r ≥ 3. It also

exists for r = 2 if either n is even or n is odd and q > n+1
2

. Then define utility

scalars (ui
h(·))h=1,...,r as follows: For h = 1, . . . , r, and for all i ∈ Wh let

ui
h(1) > ui

h(−) > ui
h(0), (6.5)

ui
h′(0) > ui

h′(−) > ui
h′(1) for all h′ ∈ {1, . . . , r} \ {h}, (6.6)

r∑
h′=1

ui
h′(−) >

r∑
h′=1

ui
h′(0). (6.7)

Observe that (ui
k(·))k∈K can always be chosen such that conditions (6.4), (6.5),

(6.6) and (6.7) are satisfied and such that the corresponding preference ordering

is strict. With this specification less than q agents prefer position 1 over 0 for

any h ∈ F . This implies that for all h ∈ F and for all agendas a ∈ A with h ∈ a,

(V (a, P ))h = 0. (6.8)

If q < n+1
2

, then it is straightforward to show that there are two cases: Either

there exists a partition {W1 . . . ,Wr} of the set of agents {1, . . . , n} into nonempty

subsets Wh, h = 1, . . . , r, such that #Wh < q for all h = 1, . . . , r, and we can

use the same utility specification as in the case where q ≥ n+1
2

. Or there exists

a partition {W1 . . . ,Wr} of {1, . . . , n} into nonempty subsets Wh, h = 1, . . . , r,

such that #Wh ≥ q and n − #Wh ≥ q for at least one h ∈ {1, . . . , r}. In the

latter case, choose the utility scalars (ui
h(·))h=1,...,r as follows: For h = 1, . . . , r,

and for all i ∈ Wh let

ui
h(0) > ui

h(−) > ui
h(1), (6.9)

ui
h′(1) > ui

h′(−) > ui
h′(0) for all h′ ∈ {1, . . . , r} \ {h}, (6.10)

r∑
h′=1

ui
h′(−) >

r∑
h′=1

ui
h′(1). (6.11)

Again observe that (ui
k(·))k∈K can always be chosen such that conditions (6.4),

(6.9), (6.10) and (6.11) are satisfied and such that the corresponding preference
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ordering is strict. With this specification at least q agents prefer position 1 over

0 for any h ∈ F . This implies that for all h ∈ F and for all agendas a ∈ A with

h ∈ a,

(V (a, P ))h = 1. (6.12)

(6.5), (6.6) and (6.8) (resp. (6.9), (6.10)and (6.12)) imply that if an agenda

contains at most m ≤ r − 1 issues from F , then there exists at least one agent

who gets his most preferred position on all m issues, and if an agenda contains all

issues from F , then every agent i gets his most preferred position on exactly r−1

issues in F . Moreover, given (6.7) (resp. (6.11)) every agent prefers an agenda

that contains all but the issues in F over any full agenda: For all agendas a that

contain all but the issues in F , and for all full agendas a′ ∈ AK ,

V (a, P ) �i V (a′, P ) for all i. (6.13)

Let (CE(a, P ))a∈A be any consistent equilibrium collection of sets of continu-

ation agendas and let a ∈ A \AK with k ∈ a for some k ∈ F . We will prove that

a /∈ CE(a, P ). By definition of the agents’ utility functions there exists an agent

i who gets his most preferred position on all issues l /∈ a. To see this, note that

all agents agree on the position for issues not in F and there are at most r − 1

issues from F which are not on agenda a. Hence,

V (a′, P ) �i V (a, P ) for all a′ ∈
⋃
l /∈a

CE((a, l), P ).

By (E2) this implies that a /∈ CE(a, P ). Lemma 2.1 then implies that

CE(a, P ) ⊂ AK for all a ∈ A with k ∈ a for some k ∈ F . (6.14)

Moreover, if a ∈ A contains all issues but those in F , then CE(a, P ) = {a}.
To see this, observe that any a′ ∈ CE((a, k), P ) with k /∈ a must be a full agenda

by (6.14). By definition of the agents’ utility function it follows that

V (a, P ) �i V (a′, P ) for all i. (6.15)

(E2) then implies that a ∈ CE(a, P ). Moreover, by (6.15) and the fact that any

a′′ ∈ CE(a, l) for some l /∈ a is a full agenda by (6.14), we conclude that no
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a′ ∈ CE((a, k), P ) with k /∈ a is rationalizable relative to a. (E3) then implies

that CE(a, P ) = {a}.

Let 0 ≤ m ≤ K − r and let a ∈ Am with h /∈ a for all h ∈ F . We will now

show inductively over m that a′ ∈ CE(a, P ) implies that a′ contains all issues but

those in F . We have shown above that this is true for m = K − r. Suppose that

the claim has been proven for all m with m ≤ m ≤ K− r, where 1 ≤ m ≤ K− r,

and let a ∈ Am−1 with h /∈ a for all h ∈ F . By (E1), if a′ ∈ CE(a, P ), then

either a′ = a or a′ ∈
⋃

k/∈aCE((a, k), P ). Let a′ ∈ CE((a, k), P ) for some k /∈ a.

If k ∈ F , then a′ = (a, k, . . .) ∈ AK by (6.14). If k /∈ F , then by our induction

hypothesis a′ contains all issues but those in F which implies that

V (a′, P ) �i V (a, P ) for all i,

since all agents agree on the position for all issues not in F . (E2) then implies that

a /∈ CE(a, P ). Hence, CE(a, P ) ⊂
⋃

k/∈a CE((a, k), P ) and any a′ ∈ CE(a, P ) is

either a full agenda or contains all issues but those in F .

Suppose by way of contradiction that there exists a′ ∈ CE(a, P ) with a′ ∈
CE((a, k), P ) for some k ∈ F . Then a′ = (a, k, . . .) ∈ AK by (6.14). Let

l /∈ F and l /∈ a and let a′′ ∈ CE((a, l), P ). Then by the induction hypothesis

a′′ = (a, l, . . .) contains all issues but those in F which implies that

V (a′′, P ) �i V (a′, P ) for all i.

Hence, a′′ is rationalizable relative to a and (E3) implies that a′′ ∈ CE(a, P ).

Moreover, if both a′ = (a, k, . . .) ∈ CE(a, P ) and a′′ = (a, l, . . .) ∈ CE(a, P ) with

k 6= l, then (E3) implies that a′ is rationalizable. Therefore, there exists an agent

i and some â ∈ CE(a, P ) with â = (a, h, . . .) for some h 6= k such that

V (a′, P ) �i V (â, P ). (6.16)

However, by what we have shown above, any â ∈ CE(a, P ) is either a full agenda

or contains all issues but those in F . Since a′ is a full agenda, this contradicts

(6.16). Hence, if a′ ∈ CE(a, P ), then a′ ∈ CE((a, k), P ) for some k /∈ F and by

the induction hypothesis we conclude that a′ contains all issues but those in F .

This proves the claim for all m with 0 ≤ m ≤ K−r. In particular, any consistent

equilibrium agenda a∗ at P has the property that F is the set of free issues at a∗.
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It remains to consider the case, where F = {1, . . . , r} with r > n. If 1 ≤ q ≤
n− 1, choose (ui

k(·))k∈K as follows. For i = 1, . . . , n− 1, let

ui
i(0) > ui

i(−) > ui
i(1), (6.17)

ui
k(1) > ui

k(−) > ui
k(0) for all k ∈ K, k 6= i, (6.18)

r∑
k=1

ui
k(−) >

r∑
k=1

ui
k(1), (6.19)

and for i = n let

un
k(0) > un

k(−) > un
k(1) for all k = n, . . . , r, (6.20)

un
k(1) > un

k(−) > un
k(0) for all k ∈ K, k /∈ {n, . . . , r}, (6.21)

r∑
l=1
l6=k

un
l (−) <

r∑
l=1
l6=k

un
l (1) for all k = n, . . . , r, (6.22)

r∑
k=1

un
k(−) >

r∑
k=1

un
k(1), (6.23)

Observe that (ui
k(·))k∈K can always be chosen such that conditions (6.17)-

(6.23) are satisfied and such that the corresponding preference ordering is strict.

Moreover, note that with this specification, for every issue k there are at least

n− 1 agents who prefer position 1 over 0, which implies that

(V (a, P ))k = 1 for all a ∈ A and for all k ∈ a.

If q = n, choose (ui
k(·))k∈K as follows. For i = 1, . . . , n− 1, let

ui
i(1) > ui

i(−) > ui
i(0), (6.24)

ui
k(0) > ui

k(−) > ui
k(1) for all k ∈ K, k 6= i, (6.25)

r∑
k=1

ui
k(−) >

r∑
k=1

ui
k(0), (6.26)

and for i = n let

un
k(1) > un

k(−) > un
k(0) for all k = n, . . . , r, (6.27)

un
k(0) > un

k(−) > un
k(1) for all k ∈ K, k /∈ {n, . . . , r}, (6.28)
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r∑
l=1
l6=k

un
l (−) <

r∑
l=1
l6=k

un
l (0) for all k = n, . . . , r, (6.29)

r∑
k=1

un
k(−) >

r∑
k=1

un
k(0), (6.30)

Again observe that (ui
k(·))k∈K can always be chosen such that conditions (6.24)-

(6.30) are satisfied and such that the corresponding preference ordering is strict.

Also, note that with this specification, for every issue k there is at most one agent

who prefers position 1 over 0, which implies that

(V (a, P ))k = 0 for all a ∈ A and for all k ∈ a.

For all quotas q the preferences we have specified above have the following

properties: Every agent i ∈ {1, . . . , n− 1} gets his most preferred position on all

issues but issue i, and agent n gets his most preferred position on all issues but

issues n, . . . , r. Moreover, all agents prefer to stop at an agenda that contains

all but the issues in F rather than adding all issues in F to the given agenda.

Finally, agent n prefers to add all remaining issues in F to any agenda that

already contains some issue in {n, . . . , r} and all issues not in F . We will use these

properties to prove that F is the set of free issues at any consistent equilibrium

agenda.

Let (CE(a, P ))a∈A be any consistent equilibrium collection of sets of contin-

uation agendas and let a ∈ A \ AK with k ∈ a for some k ∈ F = {1, . . . , r}. We

will prove that CE(a, P ) ⊂ AK . If a ∈ AK there is nothing to prove. Hence, let

a ∈ Am for some m < K. The proof is by induction over m. Let m = K − 1 and

let l /∈ a. If l /∈ F , then V ((a, l), P ) �i V (a, P ) for all i and (E2) implies that

a /∈ CE(a, P ). It follows that CE(a, P ) = {(a, l)} ⊂ AK . If l ∈ F , then there

are n− 1 agents who prefer V ((a, l), P ) over V (a, P ) and again we conclude that

CE(a, P ) = {(a, l)} ⊂ AK .

Now suppose that for all m̄ ≤ K − 1 it is true that CE(a, P ) ⊂ AK for all

a ∈ Am with m̄ ≤ m ≤ K − 1 and k ∈ a for some k ∈ F . Let a ∈ Am̄−1. If

k ∈ {1, . . . , n− 1}, then agent k gets his most preferred position on all issues not

in a, which implies that for all l /∈ a,

V (a′, P ) �k V (a, P ) for all a′ ∈ CE((a, l), P ).
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Hence, (E2) implies that a /∈ CE(a, P ) and

CE(a, P ) ⊂
⋃
l /∈a

CE((a, l), P ).

From the induction hypothesis we conclude that CE(a, P ) ⊂ AK .

If l /∈ a for all l ∈ {1, . . . , n − 1} and k ∈ a for some k ∈ {n, . . . , r}, let

a′ ∈ CE((a, l), P ) for some l ∈ {1, . . . , n− 1}. Then by the induction hypothesis

it follows that a′ ∈ AK and (6.22), respectively (6.29) imply that

V (a′, P ) �n V (a, P ).

Again, (E2) implies that a /∈ CE(a, P ) and from the induction hypothesis we

conclude that CE(a, P ) ⊂ AK .

Now let a ∈ A contain all issues but those in F . Then using the same

argument as in the first part of the proof, where we considered the case r ≤ n,

(6.19), (6.23), (6.26), (6.30) imply that CE(a, P ) = {a}. Moreover, as in the first

part of the proof this implies that F is the set of free issues at any consistent

equilibrium agenda. This proves the theorem.

�

Proof of Lemma 5.1: Let V : A× Sn → X be voting by quota q ∈ {1, . . . , n}
and let P = (�1, . . . ,�n) ∈ Sn. Let (CE(a, P ))a∈A be an equilibrium collection

of sets of continuation agendas. Then, for a ∈ AK−1 and k /∈ a (E1) implies that

CE((a, k), P ) = {(a, k)}.

Moreover, (V (a, P ))k = − and (V ((a, k), P ))k ∈ {0, 1}. If (V ((a, k), P ))k = 1

((V ((a, k), P ))k = 0) then there exists at least one agent i with ui
k(1) > ui

k(0)

(ui
k(0) > ui

k(1)). In either case the fact that max{ui
k(1), ui

k(0)} > ui
k(−) implies

that

V ((a, k), P ) �i V (a, P )

for at least one agent i. Using (E2) we conclude that a /∈ CE(a, P ) and hence

CE(a, P ) = {(a, k)} ∈ AK by (E1).

�
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Proof of Proposition 5.2: Let n be odd and let V : A × S̄n → X be voting

by quota q = n+1
2

. Let P = (�1, . . . ,�n) ∈ S̄n and let (CE(a, P ))a∈A be an

equilibrium collection of sets of continuation agendas. Obviously, for any full

agenda a ∈ AK ,

CE(a, P ) = {a}.

Now consider any agenda a ∈ AK−1 and let k /∈ a. By condition (E1) and Lemma

5.1, we conclude that

CE(a, P ) = {(a, k)}.

Now consider any agenda a ∈ AK−2 and let k and l be the free issues at a.

By condition (E1) and the previous reasoning, CE(a, P ) is a nonempty subset of

{a} ∪ CE(a, k) ∪ CE(a, l) = {a, (a, k, l), (a, l, k)}. Observe that agendas (a, k, l)

and (a, l, k) are outcome equivalent since the voting procedure does not depend on

the ordering of the issues in the agenda. Let x = V (a, P ) and y = V ((a, k, l), P ) =

V ((a, l, k), P ). Then ym = xm for all m ∈ a and yk, yl ∈ {0, 1}. By (E2)

a ∈ CE(a, P ) if and only if for all agents i,

ui
k(−) + ui

l(−) > ui
k(yk) + ui

l(yl). (6.31)

A necessary condition for (6.31) to hold for all agents is that no agent i is in the

winning majority for both issues, k and l. However, if n is odd and q = n+1
2

, there

always exists at least one agent who belongs to the winning majority for both

issues. This implies that (6.31) is violated for at least one agent i and hence,

CE(a, P ) ⊂ AK for all a ∈ AK−2.

Lemma 2.1 then implies that

CE(a, P ) ⊂ A \
(
AK−1 ∪ AK−2

)
for all a ∈ A.

�
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